Жуковского теорема - definizione. Che cos'è Жуковского теорема
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Жуковского теорема - definizione

Жуковского теорема; Формула Жуковского

Теорема Жуковского         
Теоре́ма Кутта — Жуко́вского — теорема о подъёмной силе тела, обтекаемого плоскопараллельным потоком идеальной жидкости или идеального газа. Сформулирована Мартином Кутта в 1902 году, а Н. Е. Жуковским — независимо в 1904.
Жуковского теорема         

теорема о подъёмной силе (См. Подъёмная сила), действующей на тело, находящееся в плоскопараллельном потоке жидкости или газа. Согласно этой теореме, подъёмная сила, действующая на тело в потоке жидкости или газа, обусловлена связанными с обтекаемым телом вихрями (присоединёнными вихрями), причиной возникновения которых является вязкость жидкости. Наличие этих вихрей приводит к обтеканию крыла потоком с отличной от нуля циркуляцией скорости (См. Циркуляция скорости). Сформулирована Н. Е. Жуковским в 1904.

Если установившийся плоскопараллельный потенциальный поток (см. Потенциальное течение) несжимаемой жидкости набегает на бесконечно длинный цилиндр перпендикулярно его образующим, то на участок цилиндра, имеющий длину вдоль образующей, равную единице, действует подъёмная сила Y, равная произведению плотности (среды на скорость v потока на бесконечности и на циркуляцию Г скорости по любому замкнутому контуру, охватывающему обтекаемый цилиндр, т. е. YvГ. Направление подъёмной силы получается из направления вектора скорости на бесконечности поворотом его на прямой угол против направления циркуляции. Ж. т. справедлива и при дозвуковом обтекании профиля сжимаемой жидкостью (газом). Для звуковой и сверхзвуковых скоростей обтекания Ж. т. в общем виде не может быть доказана.

Ж. т. легла в основу современной теории крыла и гребного винта. С помощью Ж. т. могут быть вычислены подъёмная сила крыла конечного размаха, тяга гребного винта, сила давления на лопатку турбины и компрессора и др.

Лит.: Жуковский Н. Е., О присоединённых вихрях, Полн. собр. соч., т. 5, М. - Л., 1937; Лойцянский Л. Г., Механика жидкости и газа, 2 изд., М., 1957.

Н. Я. Фабрикант.

Улица Жуковского         
СТРАНИЦА ЗНАЧЕНИЙ
Жуковского, улица
У́лица Жуко́вского — название улиц в различных населённых пунктах государств бывшего СССР. В основном, названы в честь поэта Василия Андреевича Жуковского или основоположника аэродинамики Николая Егоровича Жуковского (но бывают и исключения).

Wikipedia

Теорема Жуковского

Теоре́ма Кутта — Жуко́вского — теорема о подъёмной силе тела, обтекаемого плоскопараллельным потоком идеальной жидкости или идеального газа. Сформулирована Мартином Кутта в 1902 году, а Н. Е. Жуковским — независимо в 1904 году.

Формулировка теоремы:

Подъёмная сила сегмента крыла бесконечного размаха равна произведению плотности газа (жидкости), скорости газа (жидкости), циркуляции скорости потока и длины выделенного отрезка крыла. Направление действия подъёмной силы получается поворотом вектора скорости набегающего потока на прямой угол против циркуляции.

В формульном виде:

F = ρ u × Γ l , {\displaystyle {\vec {F}}=\rho {\vec {u}}_{\infty }\times {\vec {\Gamma }}l,}

где

  • F {\displaystyle {\vec {F}}}  — подъёмная сила,
  • ρ {\displaystyle \rho }  — плотность жидкости,
  • u {\displaystyle {\vec {u}}_{\infty }}  — скорость потока жидкости на бесконечности,
  • Γ {\displaystyle {\vec {\Gamma }}}  — циркуляция скорости (вектор направлен перпендикулярно плоскости профиля, направление вектора зависит от направления циркуляции),
  • l {\displaystyle l}  — длина рассматриваемого сегмента крыла (перпендикулярно плоскости профиля).

Данная теорема явилась основой для построения современной теории крыла и гребного винта. Она даёт возможность рассчитать подъёмную силу крыла конечного размера, тягу гребного винта, нагрузку на лопатки турбины и так далее.

Для определения циркуляции скорости крылового профиля с острой задней кромкой удобно воспользоваться эмпирическим постулатом Жуковского — Чаплыгина.

Примечание. Можно вывести из принципа Бернулли и из формулы для сил давления R = p n d S {\displaystyle {\vec {R}}=\oint p{\vec {n}}dS} .

Che cos'è Теорема Жуковского - definizione